It is crucial to learn the methods of dealing with categorical variables as categorical variables are known to hide and mask lots of interesting information in a data set. A categorical variable identifies a group to which the thing belongs. You could categorise persons according to their race or ethnicity, cities according to their geographic location, or companies according to their industry. However, I have always found a challenge to visualise categorical variables in python.

In this article, I use the ggplot2 diamond dataset to explore various techniques while visualising categorical variables in python.

If you find this article helpful or know of other methods which work well with categorical variables? Please share your thoughts in the comments section below. I’d love to hear you.

*Visualise Categorical Variables in Python using Univariate Analysis*

At this stage, we explore variables one by one. For categorical variables, we’ll use a frequency table to understand the distribution of each category. It is also used to highlight missing and outlier values.We can also read as a percentage of values under each category. It can be measured using two metrics, Count and Count% against each category. A bar chart can be used as visualisation.

**One-Way Tables**

Create frequency tables (also known as crosstabs) in pandas using the pd.crosstab() function. The function takes one or more array-like objects as indexes or columns and then constructs a new DataFrame of variable counts based on the supplied arrays.

Let’s make a one-way table of the clarity variable. Even these simple one-way tables give us some useful insight: we immediately get a sense of the distribution of records across the categories.

clarity variable. Even these simple one-way tables give us some useful insight: we immediately get a sense of the distribution of records across the categories.

```
my_tab = pd.crosstab(index = train["clarity"], # Make a crosstab
columns="count") # Name the count column
my_tab.plot.bar()
```

Since the crosstab function produces DataFrames, the DataFrame operations work on crosstabs.

```
In [10]:
print (my_tab.sum(), "\n") # Sum the counts
print (my_tab.shape, "\n") # Check number of rows and cols
my_tab.iloc[1:7] # Slice rows 1-6
```

One of the most useful aspects of frequency tables is that they allow you to extract the proportion of the data that belongs to each category. With a one-way table, you can do this by dividing each table value by the total number of records in the table:

```
my_tab/my_tab.sum()
```

*Visualise Categorical Variables in Python using Bivariate Analysis*

Bivariate Analysis finds out the relationship between two variables. Here, we look for association and disassociation between variables at a pre-defined significance level.

**Categorical & Continous: To find the relationship between categorical and continuous variables, we can use Boxplots**

Boxplots are another type of univariate plot for summarising distributions of numeric data graphically. Let’s make a boxplot of carat using the pd.boxplot() function:

The central box of the boxplot represents the middle 50% of the observations, the central bar is the median and the bars at the end of the dotted lines (whiskers) encapsulate the great majority of the observations. Circles that lie beyond the end of the whiskers are data points that may be outliers.

```
In [39]:
train.boxplot(column="price", # Column to plot
by= "clarity", # Column to split upon
figsize= (8,8)) # Figure size
```

The boxplot above is curious: we’d expect diamonds with better clarity to fetch higher prices and yet diamonds on the highest end of the clarity spectrum (IF = internally flawless) actually have lower median prices than low clarity diamonds!

#### Categorical & Categorical: To find the relationship between two categorical variables, we can use following methods:

- Two-way table: We can start analysing the relationship by creating a two-way table of count and count%. The rows represent the category of one variable and the columns represent the categories of the other variable. We show count or count% of observations available in each combination of row and column categories.
- Stacked Column Chart: This method is more of a visual form of a Two-way table.

```
In [13]:
#two-way table
grouped = train.groupby(['cut','clarity'])
grouped.size()
```

#### Two-Way Tables

Two-way frequency tables, also called contingency tables, are tables of counts with two dimensions where each dimension is a different variable. Two-way tables can give you insight into the relationship between two variables. To create a two-way table, pass two variables to the pd.crosstab() function instead of one:

very interesting,

thanks!

good work

Quite nice!